© 2015 - 2019 by Christopher Kissel. Proudly created with Wix.com

  • Twitter
  • Facebook Social Icon

RESEARCH [N - O]

Scroll down to find direct links to publicly posted research papers, presentations, etc. in the field of sound source separation and related topics.  I have listed them in alphabetical order by title for ease of browsing and have provided these links, which are available on the web, for your convenience.  I have provided permalinks for those papers available for a fee.  Titles without a link can be found through a web search.  Please use the CONTACT page to notify me of any corrections, to supply suggestions for adding any additional pertinent links, or to notify me if you encounter any dead links in this list.  Thanks!

 

NEURAL NETWORK ALTERNATIVES TO CONVOLUTIVE AUDIO MODELS FOR SOURCE SEPARATION [permalink]

Shrikant Venkataramani, Cem Subakan, University of Illinois at Urbana Champaign, Paris Smaragdis, University of Illinois at Urbana-Champaign Adobe Research (2017)

NEURAL NETWORK ALTERNATIVES TO CONVOLUTIVE AUDIO MODELS FOR SOURCE SEPARATION (slides) [PDF]

Shrikant Venkataramani, Cem Subakan, University of Illinois at Urbana Champaign, Paris Smaragdis, University of Illinois at Urbana-Champaign Adobe Research (2017)

 

NEURAL SEPARATION OF OBSERVED AND UNOBSERVED DISTRIBUTIONS [PDF]

Tavi Halperin, The Hebrew University of Jerusalem, Ariel Ephrat, Google Research, Yedid Hoshen, Facebook AI Research (2018)

NEW DISTANCE MEASURE FOR MONAURAL MODEL-BASED SOUND SEPARATION [permalink]

Mahale, P.M.B. ; Dept. of Electr. Eng., Amirkabir Univ. of Technol., Tehran ; Sayadiyan, A. (2008)

 

NEW METHODS OF COMPLEX MATRIX FACTORIZATION FOR SINGLE-CHANNEL SOURCE SEPARATION AND ANALYSIS [PDF]

Brian John King, University of Washington (2012)

 

NEW RESULTS ON SINGLE-CHANNEL SPEECH SEPARATION USING SINUSOIDAL MODELING [permalink]

Beikzadehmahalen, Pejman Mowlaee; Christensen, Mads Græsbøll; Jensen, Søren Holdt, Aalborg University, Denmark (2011)

 

NEW STRATEGIES FOR SINGLE-CHANNEL SPEECH SEPARATION [PDF]

Mowlaee Beikzadehmahalen, Pejman, Institut for Elektroniske Systemer, Aalborg Universitet (2010)

NMF-BASED BLIND SOURCE SEPARATION USING A LINEAR PREDICTIVE CODING ERROR CLUSTERING CRITERION [permalink]

Xin Guo1, Stefan Uhlich2 and Yuki Mitsufuji3, 1 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 2 Sony European Technology Center (EuTEC), Stuttgart, Germany, 3 Sony Corporation, Audio Technology Development Department, Tokyo, Japan (2015)

NMF-BASED INFORMED SOURCE SEPARATION [PDF]

Christian Rohlfing, Julian M. Becker, and Mathias Wien, Institut für Nachrichtentechnik, RWTH Aachen University, Germany (2016)

NMF-BASED INFORMED SOURCE SEPARATION (poster) [PDF]

Christian Rohlfing, Julian M. Becker, and Mathias Wien, Institut für Nachrichtentechnik, RWTH Aachen University, Germany (2016)

NMF-BASED METHOD FOR DRUM SEPARATION [PDF]

Dmitry Ulyanov, Moscow State University, Moscow, Russia (2013)

 

NMF BASED SPEECH AND MUSIC SEPARATION IN MONAURAL SPEECH RECORDINGS WITH SPARSENESS AND TEMPORAL CONTINUITY CONSTRAINTS [PDF direct download]

Ming Tu, Xiang Xie, Yishan Jiao, Reseach Institue of Communication Technology, Beijing Institute of Technology, Beijing, China (2013)

 

NMF WITH SPECTRAL AND TEMPORAL CONTINUITY CRITERIA FOR MONAURAL SOUND SOURCE SEPARATION [PDF]

Julian M. Becker, Christian Sohn and Christian Rohlfing, Institut für Nachrichtentechnik, RWTH Aachen University, Germany (2014)

 

NMF WITH TIME-FREQUENCY ACTIVATIONS TO MODEL NON STATIONARY AUDIO EVENTS [permalink]

Romain Hennequin, Roland Badeau and Bertrand David, Institut Telecom, Telecom ParisTech, Paris, France (2010)

 

NMF WITH TIME-FREQUENCY ACTIVATIONS TO MODEL NON STATIONARY AUDIO EVENTS (poster) [PDF]

Romain Hennequin, Roland Badeau and Bertrand David, Institut Telecom, Telecom ParisTech, Paris, France (2010)

 

NON LINEAR BLIND SOURCE SEPARATION USING COMPUTATIONALLY INTELLIGENT TECHNIQUES [PDF]

Debashish Sadangi, Ila Mishra, Department of Electronics & Communication Engineering, National Institute of Technology, Rourkela, Rourkela, Orissa, India (2009)

 

NON-NEGATIVE DIMENSIONALITY REDUCTION FOR AUDIO SIGNAL SEPARATION BY NNMF AND ICA [PDF]

Sara Krause-Solberg and Armin Iske, Department of Mathematics, University of Hamburg, Germany (2015)

 

NON-NEGATIVE HIDDEN MARKOV MODELING OF AUDIO WITH APPLICATION TO SOURCE SEPARATION [PDF]

Gautham J. Mysore 1, Paris Smaragdis 2, and Bhiksha Raj 3, 1 Center for Computer Research in Music and Acoustics, Stanford University, 2 Advanced Technology Labs, Adobe Systems Inc., 3 School of Computer Science, Carnegie Mellon University (2010)

 

NON-NEGATIVE JOINT MODELING OF SPECTRAL STRUCTURE AND TEMPORAL DYNAMICS

Gautham J. Mysore, Center for Computer Research in Music and Acoustics, Stanford University

NON-NEGATIVE MATRIX FACTOR DECONVOLUTION; EXTRACTION OF MULTIPLE SOUND SOURCES FROM MONOPHONIC INPUTS [permalink]

Paris Smaragdis, Mitsubishi Electric Research Laboratories, Cambridge, Massachusetts, USA (2004)

 

NON-NEGATIVE MATRIX FACTOR DECONVOLUTION; EXTRACTION OF MULTIPLE SOUND SOURCES FROM MONOPHONIC INPUTS (presentation, Presenter: Jain_De, Lee)

Paris Smaragdis, Mitsubishi Electric Research Laboratories, Cambridge, Massachusetts, USA (2004)

NONNEGATIVE MATRIX FACTOR 2-D DECONVOLUTION FOR BLIND SINGLE CHANNEL SOURCE SEPARATION [permalink]

Mikkel N. Schmidt, Morten Mørup, Technical University of Denmark, Informatics and Mathematical Modelling, Lyngby, Denmark (2006)

 

NON-NEGATIVE MATRIX FACTORIZATION: A POSSIBLE WAY TO LEARN SOUND DICTIONARIES [PDF]

Hiroki Asari, Tony Zador Lab, Watson School of Biological Sciences, Cold Spring Harbor Laboratory (2005)

 

NONNEGATIVE MATRIX FACTORISATION AND FRIENDS FOR AUDIO SIGNAL SEPARATION (slides) [PDF]

Cédric Févotte, Institut de Recherche en Informatique de Toulouse (IRIT), SpaRTaN/MacSeNet 2017 Summer School, Lisbon (2017)

NON-NEGATIVE MATRIX FACTORIZATION AND ITS APPLICATION TO AUDIO (presentation) [PDF]

Tuomas Virtanen, Tampere University of Technology, Tampere, Finland (2009)

 

NON-NEGATIVE MATRIX FACTORIZATION AND LOCAL DISCONTINUITY MEASURES FOR SINGING VOICE SEPARATION (slides) [PDF direct download]

Hatem Deif, Brunel University, Abu Dhabi University (2015) 

NON-NEGATIVE MATRIX FACTORIZATION BASED ALGORITHMS TO CLUSTER FREQUENCY BASIS FUNCTIONS FOR MONAURAL SOUND SOURCE SEPARATION [PDF]

Rajesh Jaiswal, Audio Research Group, School of Electrical Engineering Systems, Dublin Institute of Technology, Dublin, Ireland (2013)

 

NONNEGATIVE MATRIX FACTORIZATION BASED ON COMPLEX GENERATIVE MODEL [PDF]

Daichi Kitamura, Department of Electrical and Computer Engineering, National Institute of Technology, Kagawa College, Takamatsu, Japan (2019)

NON-NEGATIVE MATRIX FACTORIZATION FOR DRUM SOURCE SEPARATION AND TRANSCRIPTION

Jon Downing, University of Rochester, Rochester, New York (2015)

NON-NEGATIVE MATRIX FACTORIZATION FOR DRUM SOURCE SEPARATION AND TRANSCRIPTION [PDF]

Jon Downing, University of Rochester, Rochester, New York (2015)

NON-NEGATIVE MATRIX FACTORIZATION FOR DRUM SOURCE SEPARATION AND TRANSCRIPTION (poster) [PDF]

Jon Downing, University of Rochester, Rochester, New York (2015)

NONNEGATIVE MATRIX FACTORIZATION FOR SOURCE SEPARATION OF MONOPHONIC AUDIO SOURCES

Constantinos DimitriouUniversity of Patras, Mathematics Department & School of Electrical and Computer Engineering, Patras, Greece (2012)

NON-NEGATIVE MATRIX FACTORIZATION FOR SPEECH/MUSIC SEPARATION USING SOURCE DEPENDENT DECOMPOSITION RANK, TEMPORAL CONTINUITY TERM AND FILTERING [permalink]

S. Abdali, B. NaserSharif, Department of Computer Engineering, K.N. Toosi University of Technology, Tehran, Iran (2016)

NONNEGATIVE MATRIX FACTORIZATION WITH ADAPTIVE ELEMENTS FOR MONAURAL AUDIO SOURCE SEPARATION [permalink]

Julian Becker, RWTH Aachen University, Aachen, Germany (2016)

NONNEGATIVE MATRIX FACTORIZATION WITH MARKOV-CHAINED BASES FOR MODELING TIME-VARYING PATTERNS IN MUSIC SPECTROGRAMS [PDF]

Masahiro Nakano1, Jonathan Le Roux2, Hirokazu Kameoka2, Yu Kitano1, Nobutaka Ono1, and Shigeki Sagayama1, Graduate School of Information Science and Technology, The University of Tokyo 2 NTT Communication Science Laboratories, NTT Corporation (2010)

 

NON-NEGATIVE MATRIX FACTORIZATION WITH SPARSITY LEARNING FOR SINGLE CHANNEL AUDIO SOURCE SEPARATION [PDF]

Bin Gao and W.L. Woo, School of Electrical and Electronic Engineering, Newcastle University, England, United Kingdom (2012)

 

NONNEGATIVE MATRIX FACTORIZATION WITH THE ITAKURA-SAITO DIVERGENCE. WITH APPLICATION TO MUSIC ANALYSIS [PDF]

Cédric Févotte, Nancy Bertin, Jean-Louis Durrieu, LTCI (CNRS & TELECOM ParisTech), Paris, France (2008)

NONNEGATIVE MATRIX FACTORIZATION WITH TRANSFORM LEARNING [PDF]

Dylan Fagot, Cédric Févotte and Herwig Wendt, CNRS, IRIT, University of Toulouse, France (2017)

NONNEGATIVE MATRIX PARTIAL CO-FACTORIZATION FOR SPECTRAL AND TEMPORAL DRUM SOURCE SEPARATION [permalink]

Minje Kim, Jiho Yoo, Kyeongok Kang, and Seungjin Choi, Member, IEEE, IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING (2011)

 

NON-NEGATIVE PERIODIC COMPONENT ANALYSIS FOR MUSIC SOURCE SEPARATION [permalink]

Aki Hayashi and Tatsushi Matsubayashi, NTT Service Evolution Laboratories, NTT Corporation, Japan, Hirokazu Kameoka, NTT Communication Science Laboratories, NTT Corporation, Japan (2016)

NONNEGATIVE SIGNAL FACTORIZATION WITH LEARNT INSTRUMENT MODELS FOR SOUND SOURCE SEPARATION IN CLOSE-MICROPHONE RECORDINGS [PDF direct download]

Julio J Carabias-Orti1, Máximo Cobos2, Pedro Vera-Candeas3 and Francisco J Rodríguez-Serrano3, 1Music Technology Group (MTG), Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08018, Spain, 2Computer Science Department, Universitat de València, Valencia, Spain, 3Telecommunication Engineering Department, Universidad de Jaen, Linares, Jaen, Spain (2013)

NON-NEGATIVE SOURCE SEPARATION: RANGE OF ADMISSIBLE SOLUTIONS AND CONDITIONS FOR THE UNIQUENESS OF THE SOLUTION [permalink]

Saïd Moussaoui, David Brie, CRAN UMR 7039 CNRS-UHP-INPL, B.P.239, 54506 Vandœuvre-lès-Nancy, France, Jérôme Idier, IRCCyN CNRS UMR6597 B.P.92101, 44321 Nantes Cedex 3, France (2005)

 

NON-NEGATIVE TENSOR FACTORISATION OF MODULATION SPECTROGRAMS FOR MONAURAL SOUND SOURCE SEPARATION [PDF]

Tom Barker, Tuomas Virtanen, Department of Signal Processing, Tampere University of Technology, Finland (2013)

 

NONNEGATIVE TENSOR FACTORIZATION WITH FREQUENCY MODULATION CUES FOR BLIND AUDIO SOURCE SEPARATION [PDF]

Elliot Creager1,3, Noah D. Stein1,  Roland Badeau2,3, Philippe Depalle3, 1 Analog Devices Lyric Labs, Cambridge, MA, USA, 2 LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, Paris, France, 3 CIRMMT, McGill University, Montréal, Canada (2016)

NORMALIZED CUTS FOR PREDOMINANT MELODIC SOURCE SEPARATION [permalink]

Mathieu Lagrange, University of Victoria, Canada, Luis Gustavo Martins, NESC Porto / FEUP, Portugal, Jennifer Murdoch and George Tzanetakis, University of Victoria, Canada (2008)

 

NOTE-BASED SOUND SOURCE SEPARATION OF POLYPHONIC RECORDINGS [PDF]

Kristóf Aczél, István Vajk, Department of Automation and Applied Informatics, Budapest University of Technology and Economics (2009)

 

NOTE CLUSTERING BASED ON 2D SOURCE-FILTER MODELING FOR UNDERDETERMINED BLIND SOURCE SEPARATION [permalink]

Martin Spiertz, Volker Gnann, Institut fuer Nachrichtentechnik, RWTH Aachen University, Aachen, Germany (2011)

 

NOTE SEPARATION OF POLYPHONIC MUSIC BY ENERGY SPLIT [PDF]

Kristóf Aczél, István Vajk, Department of Automation and Applied Informatics, Budapest University of Technology and Economics, Budapest, Hungary (2008)

 

OBJECT-BASED AUDIO CAPTURE: SEPARATING ACOUSTICALLY-MIXED SOUNDS [permalink]

Alexander George Westner, Massachusetts Institute of Technology (1999)

 

OBJECT-BASED MODELING OF AUDIO FOR CODING AND SOURCE SEPARATION [permalink]

Joonas Nikunen, Tampere University of Technology, Tampere, Finland (2015)

 

OBJECT-BASED SOUND SOURCE MODELING FOR MUSICAL SIGNALS [PDF]

Tero Tolonen, Helsinki University of Technology, Laboratory of Acoustics and Audio Signal Processing, Espoo, Finland (2000)

 

OBRAMUS: A SYSTEM FOR OBJECT-BASED RETOUCH OF AMATEUR MUSIC [permalink]

Jordi Janer1, Stanislaw Gorlow1, and Keita Arimoto2, 1Universitat Pompeu Fabra, Music Technology Group, Catalunya, Spain, 2Yamaha Corporation, Music and Sound Processing Group, Iwata, Shizuoka, Japan (2014)

 

ONE MICROPHONE SINGING VOICE SEPARATION USING SOURCE-ADAPTED MODELS [permalink]

Alexey Ozerov, Pierrick Philippe, France Télécom R&D 4, 35512 Cesson Sévigné cedex, France, Rémi Gribonval, Frédéric Bimbot, IRISA (CNRS & INRIA) - projet METISS Campus de Beaulieu, 35042 Rennes Cedex, France (2005)

 

ONE MICROPHONE SINGING VOICE SEPARATION USING SOURCE-ADAPTED MODELS (presentation) [PDF]
Alexey Ozerov, Pierrick Philippe, Remi Gribonval, Frederic Bimbot, Presented by Orly Kohn Feldman, Signal and Image processing Lab (SIPL), Department of Electrical Engineering, Technion, Israel Institute of Technology (2006)

 

ONE MICROPHONE SOURCE SEPARATION [PDF]

Sam T. Roweis, Gatsby Unit, University College London (2000)

 

ONLINE HARMONIC/PERCUSSIVE SEPARATION USING SMOOTHNESS/SPARSENESS CONSTRAINTS [PDF]

F. Canadas-Quesada, P. Vera-Candeas, N. Ruiz-Reyes, Univ. de Jaén, Spain, P. Alonso, Univ. Politécnica de Valencia, Spain, J. Ranilla, Univ. de Oviedo, Spain (2015)

 

ONLINE, LOUDNESS-INVARIANT VOCAL DETECTION IN MIXED MUSIC SIGNALS [permalink]

Bernhard Lehner1, Jan Schlüter2, and Gerhard Widmer1, 1 Department of Computational Perception, Johannes Kepler University, Linz, Austria, 2 Austrian Research Institute for Artificial Intelligence, Vienna, Austria (2018)

ON-LINE NONNEGATIVE MATRIX FACTORIZATION FOR MUSIC SIGNAL SEPARATION [permalink]

Seokjin Lee ; Dept. of Electron. Eng., Kyonggi Univ., Suwon, South Korea (2014)

 

ONLINE PLCA FOR REAL-TIME SEMI-SUPERVISED SOURCE SEPARATION [PDF]

Zhiyao Duan1⋆, Gautham J. Mysore2 and Paris Smaragdis2,3, 1 EECS Department, Northwestern University, 2 Advanced Technology Labs, Adobe Systems Inc., 3 University of Illinois at Urbana-Champaign (2012)

 

ONLINE PLCA FOR REAL-TIME SEMI-SUPERVISED SOURCE SEPARATION (slides) [PPTX direct download]
Zhiyao Duan1⋆, Gautham J. Mysore2 and Paris Smaragdis2,3, 1 EECS Department, Northwestern University, 2 Advanced Technology Labs, Adobe Systems Inc., 3 University of Illinois at Urbana-Champaign (2012)

 

ONLINE SCORE-INFORMED SOURCE SEPARATION IN POLYPHONIC MIXTURES USING INSTRUMENT SPECTRAL PATTERNS [PDF]

A. J. Muñoz-Montoro1, P. Vera-Candeas1, R. Cortina2, E. F. Combarro2, P. Alonso-Jordá3, 1Department of Telecommunication Engineering, University of Jaén, Jaén, Spain, 2Department of Computer Science, University of Oviedo, Oviedo, Spain, 3Department of Information Systems and Computation, Universitat Politècnica de València, Valencia, Spain (2019)

ONLINE SCORE-INFORMED SOURCE SEPARATION WITH ADAPTIVE INSTRUMENT MODELS [permalink]

Francisco J. Rodriguez-Serrano a*, Zhiyao Duan b, Pedro Vera-Candeas a, Bryan Pardo c & Julio J. Carabias-Orti d, a Department of Telecommunication Engineering, University of Jaen, Spain, b Department of Electrical and Computer Engineering, University of Rochester, NY, USA, c Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, USA, d Music Technology Group Universitat Pompeu Fabra, Barcelona (2015)

 

ONLINE SINGING VOICE SEPARATION USING A RECURRENT ONE-DIMENSIONAL U-NET TRAINED WITH DEEP FEATURE LOSSES [permalink]

Clement S. J. Doire, Audionamix, Paris, France (2019)

ONSET DETECTION VIA SEPARATION OF HARMONIC CONTENT FROM MUSICAL NOTES [PDF]

Alejandro Delgado Castro, Department of Electronic Engineering, University of York, York, United Kingdom, Giorgos Siamantas, Independent Researcher, Hamburg, Germany, John E. Szymanski, Department of Electronic Engineering, University of York, York, United Kingdom (2017)

ON SPECTRAL BASIS SELECTION FOR SINGLE CHANNEL POLYPHONIC MUSIC SEPARATION [PDF]

Minje Kim, Seungjin Choi, Department of Computer Science, Pohang University of Science and Technology, Korea (2005)

 

ON THE CONSTRUCTION OF NON-NEGATIVE DIMENSIONALITY REDUCTION METHODS [PDF]

Sara Krause-Solberg, Faculty of Mathematics, Munich University of Technology, Garching, Germany, Armin Iske, Department of Mathematics, University of Hamburg, Hamburg, Germany (2016)

ON THE DISJOINTNESS OF SOURCES IN MUSIC USING DIFFERENT TIME-FREQUENCY REPRESENTATIONS [permalink]

Dimitrios Giannoulis, Daniele Barchiesi, Anssi Klapuri, Mark D. Plumbley, Centre for Digital Music, Queen Mary University of London, London, UK (2011)

 

ON-THE-FLY AUDIO SOURCE SEPARATION [permalink]

Dalia El Badawy, Ngoc Q. K. Duong and Alexey Ozerov, Technicolor, (Dalia El Badawy, Ngoc Duong, Alexey Ozerov. On-the-fly audio source separation. the 24th IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2014), Reims, France (2014)

ON THE IMPORTANCE OF TEMPORAL CONTEXT IN PROXIMITY KERNELS: A VOCAL SEPARATION CASE STUDY [PDF]

Delia Fano Yela1, Sebastian Ewert1, Derry FitzGerald2, and Mark Sandler1, 1Queen Mary University of London, 2Cork School of Music, Cork Institute of Technology (2017)

ON THE IMPROVEMENT OF SINGING VOICE SEPARATION FOR MONAURAL RECORDINGS USING THE MIR-1K DATASET [permalink]

Chao-Ling Hsu, Jyh-Shing R Jang, Dept. of Comput. Sci., Nat. Tsing Hua Univ., Hsinchu, Taiwan (2009)

 

ON THE USE OF AUDITORY REPRESENTATIONS FOR SPARSITY-BASED SOUND SOURCE SEPARATION [permalink]

Burred, J.J. ; Commun. Syst. Group, Tech. Univ. of Berlin ; Sikora, T. (2005)

 

ON THE USE OF MASKING FILTERS IN SOUND SOURCE SEPARATION [PDF]

Derry FitzGerald, Rajesh Jaiswal, Audio Research Group, School of Electrical Engineering Systems, Dublin Insitute of Technology, Dublin, Ireland (2012)

 

ON THE USE OF STATISTICAL TOOLS FOR AUDIO PROCESSING (slides) [PPT direct download]

Mathieu Lagrange, Juan José Burred, Analyse / Synthèse Team, IRCAM (2010)

 

ON THE USE OF THE BETA DIVERGENCE FOR MUSICAL SOURCE SEPARATION [PDF]

Derry FitzGerald, Dublin Institute of Technology, Matt Cranitch, Cork Institute of Technology, Eugene Coyle, Dublin Institute of Technology (2009)

 

ON THE USE OF TIME–FREQUENCY REASSIGNMENT IN ADDITIVE SOUND MODELING [PDF]

Kelly Fitz, AES Member and Lippold Haken, AES Member, Department of Electrical Engineering and Computer Science, Washington University, Pulman, Washington (2002)

OPEN-UNMIX - A REFERENCE IMPLEMENTATION FOR AUDIO SOURCE SEPARATION (website)

Fabian-Robert Stöter1, Stefan Uhlich2, Antoine Liutkus1, and Yuki Mitsufuji3, 1 Inria and LIRMM, University of Montpellier, France, 2 Sony Europe B.V., Germany, 3 Sony Corporation, Japan (2019)

 

OPEN-UNMIX - A REFERENCE IMPLEMENTATION FOR AUDIO SOURCE SEPARATION [PDF]

Fabian-Robert Stöter1, Stefan Uhlich2, Antoine Liutkus1, and Yuki Mitsufuji3, 1 Inria and LIRMM, University of Montpellier, France, 2 Sony Europe B.V., Germany, 3 Sony Corporation, Japan (2019)

OPEN-UNMIX: END-TO-END MUSIC DEMIXING WITH PYTORCH

Fabian-Robert Stöter, Antoine Liutkus, Devpost (2019)

OPTIMAL WEIGHT LEARNING FOR COUPLED TENSOR FACTORIZATION WITH MIXED DIVERGENCES [PDF]

Umut Şimşekli, Beyza Ermiş, A. Taylan Cemgil, Boǧaziçi University, Dept. of Computer Engineering, Istanbul, Turkey, Evrim Acar, University of Copenhagen, Faculty of Science, Frederiksberg C, Denmark (2013)

 

OPTIMIZATION AND PARALLELIZATION OF MONAURAL SOURCE SEPARATION ALGORITHMS IN THE OPENBLISSART TOOLKIT [PDF]

Felix Weninger, Björn Schuller, Technische Universität München (2012)

 

OPTIMIZING COHERENT DEMODULATION FOR IMPROVED SEPARATION OF OVERLAPPING SOURCES [permalink]

Sell, G. ; Electr. & Comput. Eng. Dept., Univ. of Maryland, College Park, MD, USA (2013)

 

OPTIMIZING MELODIC EXTRACTION ALGORITHM FOR JAZZ GUITAR RECORDINGS USING GENETIC ALGORITHMS [PDF]

Sergio Giraldo, Rafael Ramirez, Music Technology Group, Pompeu Fabra University (2014)

 

ORACLE ESTIMATORS FOR THE BENCHMARKING OF SOURCE SEPARATION ALGORITHMS [PDF]

Emmanuel Vincent 1, Rémi Gribonval, METISS group, IRISA-INRIA, Campus de Beaulieu, 35042 Rennes CEDEX, France, Mark D. Plumbley, Center for Digital Music, Department of Electronic Engineering Queen Mary, University of London, London, United Kingdom <inria-00544194> (2007)

 

OVERLAPPING SIGNAL SEPARATION METHOD USING SUPERRESOLUTION TECHNIQUE BASED ON EXPERIMENTAL ECHO SHAPE [PDF direct download]

Jihad Al-Oudatallah,1 Fariz Abboud,1 Mazen Khoury,2 and Hassan Ibrahim2, 1Department of Electronics and Communications, Damascus University, Damascus, Syria, 2Higher Institute for Applied Science and Technology, Damascus, Syria (2017)

OVERVIEW OF PERFORMANCE ENHANCEMENT OF REPET ALGORITHM USING MFCC [PDF]

Snigdha S. Bhattacharjee1, Amruta Moon2, Department of Computer Science and Engineering, G.H.R.I.E.T.W., Rashtrasant Tukdoji, Maharaj, Nagpur University, Nagpur, India (2014)